banner
Maison / Nouvelles / Le génotype ABO modifie le microbiote intestinal en régulant les niveaux de GalNAc chez le porc
Nouvelles

Le génotype ABO modifie le microbiote intestinal en régulant les niveaux de GalNAc chez le porc

Sep 06, 2023Sep 06, 2023

Nature volume 606, pages 358-367 (2022)Citer cet article

22 000 accès

33 citations

92 Altmétrique

Détails des métriques

La composition du microbiome intestinal varie considérablement selon les individus et est corrélée à la santé1. Comprendre dans quelle mesure et comment la génétique de l’hôte contribue à cette variation est essentiel, mais s’avère difficile, car peu d’associations ont été reproduites, en particulier chez l’homme2. Nous étudions ici l’effet du génotype de l’hôte sur la composition du microbiote intestinal dans une vaste population de porcs en mosaïque. Nous montrons que, dans des conditions de diversité génétique et d’uniformité environnementale exacerbées, la composition du microbiote et l’abondance de taxons spécifiques sont héréditaires. Nous cartographions un locus de trait quantitatif affectant l'abondance des espèces d'Erysipelotrichaceae et montrons qu'il est causé par une délétion de 2,3 kb dans le gène codant pour la N-acétyl-galactosaminyl-transférase qui sous-tend le groupe sanguin ABO chez l'homme. Nous montrons que cette délétion est un polymorphisme trans-espèce vieux de ≥ 3,5 millions d’années sous sélection équilibrée. Nous démontrons qu'il diminue les concentrations de N-acétyl-galactosamine dans l'intestin et réduit ainsi l'abondance des Erysipelotrichaceae qui peuvent importer et cataboliser la N-acétyl-galactosamine. Nos résultats fournissent des preuves très solides d'un effet du génotype de l'hôte sur l'abondance de bactéries spécifiques dans l'intestin, combinées à des informations sur les mécanismes moléculaires qui sous-tendent cette association. Nos données ouvrent la voie à l’identification du même effet dans les populations humaines rurales.

Il est de plus en plus reconnu qu’une compréhension globale de la physiologie et de la pathologie des organismes nécessite une analyse intégrée de l’hôte et de ses multiples microbiotes1. Chez l’homme, la composition du microbiote intestinal est associée à des paramètres physiologiques et pathologiques, notamment le cholestérol HDL, la glycémie à jeun et l’indice de masse corporelle2. Chez le bétail, la composition du microbiome ruminal est associée à la production de méthane et à l’efficacité alimentaire3. Ces corrélations reflètent une interaction complexe entre l'hôte et le microbiote qui peut inclure des effets directs (causaux) du microbiome sur la physiologie de l'hôte4. Plusieurs phénotypes corrélés à la composition du microbiote sont héréditaires5,6. Cela conduit à l'hypothèse que le génotype de l'hôte pourrait en partie déterminer la composition du microbiote, ce qui pourrait à son tour affecter le phénotype de l'hôte4. Cela implique que la composition du microbiote est partiellement héréditaire. Bien que des études chez les rongeurs soutiennent cette hypothèse7, les preuves sont moins convaincantes chez l’homme. Les rapports initiaux n’ont pas révélé de ressemblance plus élevée du microbiote entre les jumeaux monozygotes et les jumeaux dizygotes, suggérant un effet limité du génotype de l’hôte8. Des études plus approfondies ont mis en évidence un effet significatif de la génétique de l'hôte sur l'abondance des taxons, en particulier des Christensenellaceae9. Les loci qui sous-tendent l’héritabilité du microbiote restent difficiles à identifier chez l’homme. Outre les variantes qui provoquent une expression persistante de la lactase (LCT) et sont associées à une diminution de l'abondance de Bifidobacterium, d'autres locus GWAS se sont révélés difficiles à reproduire2,10,11,12,13,14. L’analyse de cohortes humaines plus importantes est nécessaire pour mieux comprendre l’architecture génétique de la composition du microbiote.

Pour décrypter l’architecture génétique de la composition du microbiote intestinal chez un grand omnivore monogastrique, nous rapportons la génération d’une population porcine en mosaïque et la caractérisation longitudinale de son microbiote intestinal. Nous avons observé un fort effet du génotype de l'hôte sur la composition du microbiote et identifié un locus ayant un effet important sur l'abondance de taxons spécifiques en contrôlant la concentration de N-acétyl-galactosamine dans l'intestin et affectant ainsi certaines des espèces qui utilisent ce métabolite comme une source de carbone.

7,500) mosaic population by intercrossing the offspring of 61 F0 founders from four Chinese and four western breeds for more than 10 generations (Supplementary Table 1 and Extended Data Fig. 1). Animals were reared in uniform housing and feeding conditions. We analysed more than 200 phenotypes (pertaining to body composition, physiology, disease resistance and behaviour), obtained transcriptome, epigenome and chromatin interaction data from multiple tissues, and collected plasma metabolome and microbiome data in up to 954 F6 and 892 F7 animals. The F0 animals were whole-genome sequenced at an average depth of 28.4-fold, and the F6 and F7 animals were sequence at an average depth of 8.0-fold. We called genotypes at 23.8 million single-nucleotide polymorphisms (SNPs) and 6.4 million insertion–deletions (indels) with a minor allele frequency (MAF) of ≥0.03 (>1/100 bp). The nucleotide diversity (π) (that is, the proportion of nucleotide sites that differ between homologous sequences in two breeds) between two Chinese breeds and between two European breeds was similar to that between Homo sapiens and Homo neanderthalensis (~3 × 10−3)15, whereas the π between a Chinese and a European breed approached half of that between human and chimpanzee (~4.3 × 10−3)16. The proportion of the eight founder genomes in F6 and F7 ranged from 11.2% to 14.7% at the genome level, and from 4.9% to 22.1% at the chromosome level. The median number of variants in high linkage disequilibrium (LD) (r2 ≥ 0.9) with an index variant was 30, and the median maximal distance with a variant in high LD (r2 ≥ 0.9) was 54 kb (Extended Data Fig. 1)./p>5% were filtered out. Non-redundant MAGs were generated by dRep (v.2.3.2) at threshold of 99% average nucleotide identity (ANI)92./p>

2-fold higher in domestic pigs than in human populations, as previously reported111,112,113. Nucleotide diversities between Chinese founder breeds and between European founder breeds were ~3.6x10−3 and ~2.5x10−3, respectively, i.e. 1.44-fold and 1.25-fold higher than the respective within-breed π-values. These π-values are of the same order of magnitude as the sequence divergence between Homo sapiens and Neanderthals/Denosivans (~3x10−3, ref. 15). By comparison, π-values between Africans, Asians and Europeans are typically ≤ ~1x10−3 (ref. 109). The nucleotide diversity between Chinese and European breeds averaged ~4.3x10−3. This π-value is similar to the divergence between M. domesticus and M. castaneus114, and close to halve the ~1% difference between chimpanzee and human16. Note that Chinese and European pig breeds are derived from Chinese and European wild boars, respectively, which are thought to have diverged ~1 million years ago27, while M. domesticus and M. castaneus are thought to have diverged ≤ 500,000 years ago114. (d) Autosome-specific estimates of the genomic contributions of the eight founder breeds in the F6 and F7 generation. We used a linear model incorporating all variants to estimate the average contribution of the eight founder breeds in the F6 and F7 generation at genome and chromosome level56. At genome-wide level, the proportion of the eight founder breed genomes ranged from 11.2% (respectively 11.5%) to 14.1% (14.7%) in the F6 (F7) generations. At chromosome-specific level, the proportion of the eight founder breeds ranged from 6.7% (respectively 4.9%) to 20.7% (22.1%) in the F6 (F7) generations. The genomic contribution of the eight founder breeds in the F6 and F7 generation is remarkably uniform and close to expectations (i.e. 12.5%) both at genome-wide and chromosome-wide level, suggesting comparable levels of genetic diversity across the entire genome. This does not preclude that more granular examination may reveal local departures from expectations, or under-representation of incompatible allelic combinations at non-syntenic loci. (e-f) Indicators of achievable mapping resolution in the F6 generation: (e) Frequency distribution (density) of the number of variants in high LD (r2 ≥ 0.9) with an “index” variant (was computed separately for all variants considered sequentially as the “index”), corresponding to the expected size of “credible sets” in GWAS115. The red vertical line corresponds to the genome-wide median. The green vertical line corresponds to the mapping resolution achieved in this study for the ABO locus (see hereafter). (f) Frequency distribution (density) of the maximum distance between an index variant and a variant in high LD (r2 ≥ 0.9) with it, defining the spread of credible sets. Red and green vertical lines are as in (D)./p>95% of day 120 and 240 faeces and caecum content samples of both F6 and F7 generations, hence defined as core bacterial taxa. (b) The compositions of the porcine and human intestinal microbiota are closer to each other than either is to that of the mouse. Boxplots are as is Fig. 1c. The number of samples available for analysis were 1281 pigs, 106 humans and 6 mice. (c) Abundances (F6-F7 averages when available) of the 43 families represented in Fig. 1b in the seven sample types relative to the sample type in which they are the most abundant (red – blue scale). The families are ordered according to the sample type in which they are the most abundant. The colour-code for phyla is as in Fig. 1b. Columns are added for comparison with mouse and human. Mouse data are from Fig. 1 in Suzuki & Nachman116, and human data from Fig. 6 in Vuik et al117. P_I: proximal ileum, D_IL: distal ileum, C: caecum, CO: colon, RE: rectum, F: faeces. The families differing the most with regards to location-specific distribution between species include Helicobacteriaceae, Veillonellaceae, Lactobacillaceae and Streptocaccaceae./p> 10 MYA. It will be interesting to study larger numbers of warthog to see whether the same 2.3 kb deletion exists in this and other related species as well. (b) Alignment of ~900 base pairs of the O alleles of domestic pigs (Bamaxian), European and Asian wild boars, and Sus cebufrons demonstrating that these are identical-by-descent. The SINE element that is presumed to have mediated the recombinational event that caused to 2.3 kb deletion is highlighted in red. Context: To further support their identity-by-descent we aligned ~900 base pairs (centred on the position of the 2.3 kb deletion) of the O alleles of domestic pig, European and Asian wild boars and Sus cebifrons. The sequences were nearly identical further supporting our hypothesis. It is noteworthy that the old age of the “O” allele must have contributed to the remarkable mapping resolution (≤3 kb) that was achieved in this study. In total, 42 variants were in near perfect LD (r2 ≥ 0.9) with the 2.3 kb deletion in the F0 generation, spanning 2,298 bp (1,522 on the proximal side, and 762 on the distal side of the 2.3 kb deletion). This 2.3 kb span is lower than genome-wide expectations (17th percentile), presumably due to the numerous cross-overs that have accrued since the birth of the 2.3 kb deletion that occurred in the distant past. Yet the number of informative variants within this small segment is higher than genome-wide average of (57% percentile) also probably due at least in part to the accumulation of numerous mutations since the remote time of coalescence of the A and O alleles (see Fig. 1d in main text). (c) QQ plots for the effect of AO genotype on 150 phenotypes pertaining to meat quality, growth, carcass composition, hematology, health, and other phenotypes in the F6 and F7 generation. P-values were obtained using a mixed model followed by meta-analysis (weighted Z score) across the F6 and F7 generations as described in Methods. log-transformed p-values used for the QQ plot are nominal and two-sided. Context: Our findings in suidae are reminiscent of the trans-species polymorphism of the ABO gene in primates attributed to balancing selection26. The phenotype driving balancing selection remain largely unknown yet a tug of war with pathogens is usually invoked: synthesized glycans may affect pathogen adhesion, toxin binding or act as soluble decoys, while naturally occurring antibodies may be protective20,44. In humans, the O allele may protect against malaria118, E. Coli and Salmonella enteric infection119, SARS-CoV-142, SARS-CoV-243 and schistosomiasis120,121,122, while being a possible risk factor for cholera123, H. pylori124 and norovirus infection125. Whatever the underlying selective force, it appears to have operated independently in at least two mammalian branches (primates and suidae), over exceedingly long periods of time, and over broad geographic ranges, hence pointing towards its pervasive nature. To gain insights in what selective forces might underpin the observed balanced polymorphism, we tested the effect of porcine AO genotype on >150 traits measured in the F6 and F7 generations pertaining to carcass composition, growth, meat quality, hematological parameters, disease resistance and behaviour. No significant effects were observed when accounting for multiple testing, including those pertaining to immunity and disease resistance. (d) Expression profile of the AO gene in a panel of adult and embryonic porcine tissues (own RNA-Seq data)./p>